
DRAFT
DRAFT

Euterpe: A Web Framework for Interactive Music
Systems

YONGYI ZANG * CHRISTODOULOS BENETATOS * AND ZHIYAO DUAN
(yongyi.zang@rochester.edu) (c.benetatos@rochester.edu) (zhiyao.duan@rochester.edu)

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

We present Euterpe, a prototyping web framework designed to facilitate the deployment of
interactive music systems on the web. Utilizing the web’s natural cross-platform compatibil-
ity, Euterpe enables widespread accessibility to these systems, potentially maximizing their
impact. One of our main goals is to reduce the burden on developers by providing support
in handling the JavaScript aspects of implementation. While developers still need to write
JavaScript for their core algorithms, Euterpe assumes the responsibilities of receiving both
audio and MIDI real-time input streams, synchronizing them, and sending them to the core
algorithm in a structured fashion. Additionally, we offer pre-built functionalities for input
and output data visualization. To showcase the capabilities of Euterpe, we conduct case stud-
ies on the deployment of “BachDuet” and “JazzImprov”, two neural network music impro-
visation algorithms that were previously inaccessible to the general public. Through these
case studies, we gather valuable feedback from both end-users who interacted with Bach-
Duet and the independent developer who created JazzImprov. Euterpe is open-sourced at
https://github.com/yongyizang/Euterpe.

0 INTRODUCTION

The domain of “Interactive music systems”, a term
coined by Rowe [1], has a long history of research
and development [2, 3]. Such systems can serve a wide
range of roles, spanning from augmented computer instru-
ments to the complete embodiment of autonomous musical
agents [1]. These systems offer enhanced musical engage-
ment, promoting active participation and creativity among
users, enabling them to experience music in a more immer-
sive way than through passive listening [4].

As such, the continued research and development of in-
teractive music systems is very important. However, it is
equally important to ensure that these systems are widely
and easily accessible to end users. Unfortunately, this is
often not the case, as research efforts focused on such
systems often conclude with open-sourcing the core al-
gorithms without fully developing a functional prototype
or creating one that is easily accessible to users without
requiring significant effort to install it [5]. A recent sur-
vey [2] on musical agents highlights the scarcity of ac-
cessible prototypes for end users. Out of the 78 surveyed
agents, only five had playable prototype systems accessi-
ble through open-source code, while only one of them had
a web demo that was easily accessible to the end users.

*Equal contribution.

This scarcity of accessible interactive music systems re-
stricts the potential impact and wider adoption among the
general public.

One possible solution to address this issue is to encour-
age the development of interactive music systems for the
web environment. By focusing on web-based implementa-
tions, developers can leverage the inherent advantages of
the web platform, such as its widespread accessibility and
cross-platform compatibility. JavaScript is the primary pro-
gramming language for web development and has gained
significant traction in the realm of music applications since
the introduction of the Web Audio API [6, 7].

However, transitioning from research code to a final
product that is accessible to end users can be a challeng-
ing task [8]. This is particularly true for interactive music
systems, as their concurrent nature often necessitates spe-
cial run-time support, such as threading as well as complex
scheduling and synchronization of multiple streams of in-
formation [9]. These systems also demand a wide range of
user interface components to display the various input and
output information associated with the musical interaction.

In this work, we introduce “Euterpe”, a prototyping
framework that aims to alleviate most of the challenges
faced by developers in the implementation of interactive
music systems on the web. We specifically focus on sys-
tems that accept musical input in the form of audio and

Submitted to J. Audio Eng. Soc., 2023 June 1

https://github.com/yongyizang/Euterpe


DRAFT
ZANG, BENETATOS AND DUAN DRAFT

MIDI, and produce output in audio and symbolic music
data formats.

We aim to support two commonly used interaction
paradigms within Euterpe: the “simultaneous” and “call &
response” playing modes, depending on whether the two
participants take turns or play at the same time. Addition-
ally, we support the two most common types of symbolic
music representation in regards to time granularity, namely
“event-based” and “grid-based” [10], as well as frame-level
processing for audio.

Euterpe takes on several crucial responsibilities in the
context of interactive music systems. It handles the recep-
tion of real-time audio and MIDI input streams, ensuring
their synchronization and structured transmission to the
core algorithm. By assuming these tasks, Euterpe relieves
developers from the need of managing these input sources,
allowing them to focus on the core functionality of their
systems.

Additionally, in order to promote the creation of user-
friendly applications, we provide a list of visualization
components called “widgets”. These widgets serve as pre-
built tools that developers can utilize to display various
types of information on the screen such as audio, MIDI,
text, and numerical parameters. Euterpe also includes cus-
tomizable settings and audio mixer windows that allow
users to control various parameters of the interaction.
These parameters include settings related to the core al-
gorithm as well as the audio levels of all the instruments
involved in the interaction.

Finally, to demonstrate Euterpe’s capabilities, we
present two case studies. First, we present our prior work
during the development of Euterpe named “BachDuet”,
which is a neural-network-based musical agent for real-
time human-AI simultaneous improvisation of duets in
Baroque style in the MIDI format. Second, we invite an
independent researcher in the field of interactive music
systems, to use Euterpe to create and deploy a prototype of
her music interaction algorithm “JazzImprov”.

The work of Euterpe development and the two case stud-
ies are guided by two research questions: 1) How can we
design and build a prototyping framework with the flex-
ibility to meet diverse developmental needs? 2) Can im-
plementing such a framework to assist researchers in de-
ploying their systems more effectively? We believe that we
have positive answers to both questions, as detailed in the
following sections: We first review related work (Sec. 1),
then delve into the design goals and requirements of Eu-
terpe (Sec. 2). Next, we present implementation details, in-
cluding the high-level system architecture and individual
components (Sec. 3). We then present the two case studies
and the feedback we received from the external developer
and the end users (Sec. 4). Finally, we explore potential
improvements and future work (Sec. 5).

1 RELATED WORK

1.1 Real-Time Interactive Music Systems
In this section, we review several real-time interactive

music systems. The design of these systems guided us in
determining the types of musical interactions Euterpe aims
to support.

“Voyager” [11] is an interactive music system that al-
lows a musician to improvise simultaneously in “free time”
with an artificial intelligence agent that responds to user
input in real time. It supports both MIDI and audio inputs.
“GenJam” [12] is a system that can improvise jazz music in
real time in the call & response mode where the musician
and the system take turns to play for a predefined num-
ber of measures. “BachDuet” [13] is a musical agent that
is able to improvise duet counterpoints in real-time with a
human player in Baroque style. The improvisation happens
in a simultaneous fashion where both the human and the
agent play a monophonic voice in the symbolic music for-
mat. User inputs are quantized to the sixteenth-note time
grid, while at the same time the agent generates its voice
aligned to the same grid.

“RL-Duet” [14] is musical agent with the same inter-
action characteristics as BachDuet, but with the difference
that it only predicts new notes on some of the slots of the
time grid, depending on the duration of the last note it gen-
erated. It is also an example of a musical agent that has
never been deployed and tested in a real human-computer
interaction scenario. “Piano Genie” [15, 16] is a neural-
network-based musical instrument that allows users to play
melodies on a full 88-key piano using a small 8-key key-
board. It supports polyphonic input and output and oper-
ates in free time. This is achieved by an event-based oper-
ation where every new MIDI event received from the user
instantly triggers a response from the core algorithm. “AI
Duet” [17] is a musical agent that engages in a free-time,
monophonic, call & response interaction with the user by
generating continuations of the user’s input on a MIDI key-
board.

Finally, “Continuator” [18] is capable of analyzing a mu-
sician’s MIDI input in real time and generating new musi-
cal MIDI phrases that continue the style and structure of
the input in a call & response fashion. Continuator also
has some interesting interaction characteristics. During the
user’s “call,” the input stream of MIDI events is pushed to a
buffer and sent to the core algorithm at variable time inter-
vals asynchronously. When the agent responds, notes are
generated step by step, while at the same time, the agent
keeps receiving input from the user (if any).

1.2 Audio and Music Analysis in JavaScript
The audio and music analysis ecosystem in JavaScript

has seen significant growth and development over the past
decade, with the introduction of several libraries and tools.
The Web Audio and Web MIDI APIs serve as low-level
tools for directly processing audio and MIDI within web
browsers. They play a pivotal role in driving the grow-
ing utilization of JavaScript in music applications, as well
as in the field of the Internet of Musical Things [19].

2 Submitted to J. Audio Eng. Soc., 2023 June



DRAFT
DRAFT JAES TEMPLATE

Based on Web Audio APIs, Tone.js provide a sim-
ple and intuitive interface for generating and manipulating
sounds. For manipulating symbolic music data Tonal.js
and Music21j are music theory libraries with support
for a variety of note representations, including MIDI.
Essentia.js and Meyda.js are libraries that offer
tools for audio analysis and processing, much like what
librosa library does for Python. Finally, Magenta.js
is a library that includes a collection of symbolic music
generation models developed by Google’s Magenta group,
built to run entirely in the browser. All these libraries have
significantly expanded the range of music-related applica-
tions that can be built entirely in the browser. Euterpe pro-
vides a platform for developing interactive music systems
using the resources mentioned above.

1.3 Web Frameworks for Hosting Systems
There are several frameworks available that aim to facil-

itate the deployment and accessibility of machine learning
systems on the web.

“Gradio” [20] is an open-source Python library that al-
lows developers to build simple GUIs for their machine-
learning models and deploy them on the web to share with
others. It is designed for hosting those models on servers,
allowing users to connect remotely, instead of downloading
them to local machines.

“HuggingFace” [21] is a web framework for hosting
neural-network-based models. The framework allows de-
velopers to deploy their models as web services that can
be accessed via RESTful APIs, making it easy for others to
use and integrate these models into their applications. Hug-
gingFace can also automatically generate widgets based on
the model type (e.g., text classification, translation) to let
users interact with the models.

Compared to Euterpe, HuggingFace and Gradio require
only knowledge of Python, which is the most commonly
used programming language for prototyping and develop-
ing machine-learning models [22]. However, these frame-
works are particularly suitable for deploying models that
support more static interaction modes, such as classifica-
tion or text-to-image tasks, which involve limited user in-
put compared to a typical real-time music interaction task.
Models in those frameworks are intended to be deployed on
remote servers, making them unsuitable for simultaneous
interaction due to speed and stability constraints of network
communication. Additionally, the scaling requirements of
server-based systems may impose financial burdens on re-
searchers and developers as the demand and resource needs
increase.

In contrast, systems based on Euterpe can be deployed
as single page applications (SPA) that run entirely on the
user’s local browser environment, thereby reducing latency
and allowing the deployment of real-time music systems
with higher interactivity. This local deployment also allows
for more efficient scaling, as the system can be easily ac-
cessed by multiple users without the need for additional
server resources. Nevertheless, this functionality requires
the developer to implement the system’s core algorithm in

JavaScript and also imposes memory and time complexity
constraints for the algorithm.

1.4 Music Prototyping Languages
Numerous specialized programming languages for com-

puter music have been developed over the years [6], specif-
ically designed for audio synthesis and processing as well
as for rapid prototyping of interactive music systems.

One such popular language is Max/MSP [23], which
is commonly used for prototyping interactive music sys-
tems [24, 3]. Max/MSP is a visual programming language
that allows users to visually connect modules and cre-
ate real-time audio and MIDI processing systems. It pro-
vides out-of-the-box graphical components for visualiz-
ing data. However, creating easily accessible and share-
able systems using Max/MSP can be challenging. While
it is possible to export Max/MSP patches as executable
files, the process can vary between platforms, making the
resulting standalone applications platform-specific. Addi-
tionally, Max/MSP does not offer native support for Linux
operating systems, further limiting its accessibility and
portability across different platforms.

Another notable language in the field is Faust [25],
which is specifically designed for executing audio signal
computations. Faust is specialized and focused on audio
processing tasks and operates at the audio sample level [9].
Faust programs can be compiled to various languages in-
cluding WebAssembly, enabling them to run directly on
web browsers. However, due to its focus on audio sig-
nal processing, handling higher-level musical structures is
challenging [9].

2 DESIGN

Euterpe is designed as a starting point to facilitate quick
prototyping of various types of interactive music systems.
To achieve that, we first try to identify the aspects in which
these systems can significantly differ as well as the com-
mon core elements that they share. Then we incorporate
support for those features that could ensure a wide cover-
age of interactive music systems.

Textual or verbal interaction between two entities always
happens in a call & response fashion; however, as discussed
in Sec. 1.1, a musical interaction can happen in call & re-
sponse (e.g., Continuator), simultaneous (e.g., BachDuet)
or any combination of the two (e.g., Voyager). Regarding
temporal granularity, musical interaction can happen based
on a strict or a more fluid time grid. In other scenarios,
such as “free time” (e.g., Voyager), there might not even
be a time grid, with participants follow their intuition and
take actions at completely irregular points in time. In re-
gards to modalities, human-computer musical interaction
may involve multiple input and output modalities, such as
audio, visual or symbolic data. Additionally, depending on
these aforementioned interaction scenarios, interactive mu-
sic systems often use similar ways to visualize the inter-
action, such as waveform and spectrogram views for au-
dio, or piano roll and score for symbolic music. Finally,

Submitted to J. Audio Eng. Soc., 2023 June 3



DRAFT
ZANG, BENETATOS AND DUAN DRAFT

we observe the diverse deployment environments in which
interactive music systems are made accessible. These sys-
tems may take the form of standalone applications com-
patible with various operating systems, mobile applications
specifically designed for smartphones and tablets, or even
specialized hardware devices. Furthermore, it is also im-
portant to recognize that end users have varying degrees
of familiarity with different environments, and that certain
systems may not be readily available in environments they
are familiar with.

Therefore, we aim to achieve the following design ob-
jectives:

1. Support a variety of musical interaction modes (Sec. 3)
2. Support both audio and symbolic music modalities

(Sec. 3.1)
3. Provide various options for information visualization

(Sec. 3.6)
4. Achieve cross-platform compatibility and ease of access

for end users (Sec. 3.8)

An overview of Euterpe’s architecture is shown in
Figure 1. The “Scheduler”(Sec 3.4) is Euterpe’s brain,
and it functions as an intermediary between the user’s
input and the music interaction core algorithm, the
“Agent”(Sec. 3.2). The Scheduler is responsible for syn-
chronizing all different audio and note events and trigger-
ing the corresponding visual and audio components in the
GUI. Each of these components, is treated as an indepen-
dent module, capable of operating concurrently with the
others. This modular design is informed by the fact that in-
teractive music systems are inherently concurrent [9], i.e.,
different components of the system may be excecuted out-
of-order or in partial order. For communication between
these elements, we design a music interaction communi-
cation protocol (MICP) (Sec. 3.3). This modular design
also allows developers to focus on the core algorithm,
while Euterpe undertakes the task of interpreting the user
input, forming structured data to send to the algorithm,
and managing the presentation of the user’s input and the
Agent’s output.

3 IMPLEMENTATION

For the implementation of Euterpe, we utilize Vue.js, a
JavaScript framework for building web applications. Vue.js
provides reactivity and offers a component-based architec-
ture, which suits well the modular and concurrent design-
ing approach outlined in Sec. 2. Additionally, we make use
of the WebAudio and WebMidi APIs, which provide robust
support for handling audio and MIDI input/output within
web browsers.

To further improve Euterpe’s performance, we also uti-
lize parallelism. While JavaScript itself does not natively
support multiple threads, we leverage the use of the Web
Workers API [26] to execute resource-intensive computa-
tions in separate processes. Specifically, we utilize a Web
Worker for the Agent module, and two AudioWorklets (a
specialized form of Web Worker) for recording from the

microphone and audio playback. All the rest of the mod-
ules responsible for processing the user input and rendering
the interface are running on the main thread. Communica-
tion between the main thread and the modules running on
separate Web Workers is achieved through a combination
of message passing (i.e., postMessage method) and the
utilization of SharedArrayBuffers [27], which enable effi-
cient data sharing for time-critical data such as audio sam-
ples.

3.1 User Input
Euterpe can be used for symbolic and audio-based music

interaction algorithms by supporting both note event and
audio inputs. For note event input, Euterpe implements an
on-screen touch-enabled piano keyboard, and supports the
computer keyboard as well as external MIDI devices (facil-
itated by the Web MIDI API). In terms of audio input, the
system employs the Web Audio protocol to directly extract
audio buffers from the user’s audio input device.

3.2 Agent
Euterpe implements the Agent using the Web Worker

API. A Web Worker is a JavaScript object that runs a given
JavaScript source code as a separate process. Web Work-
ers do not share memory with the main thread, and thus,
any communication with the main thread happens through
message passing. Web Workers allow us to run demanding
tasks without blocking the main thread, ensuring a smooth
experience for end users.

The agent in Euterpe follows a modular approach by
organizing its logic into separate steps commonly found
in interactive music algorithms. These steps are encapsu-
lated as callback functions called “hooks”. We provide a set
of default hooks that cover various aspects of the Agent’s
functionality:

• The loadConfig hook is triggered when the configu-
ration object is received from the main thread. The agent
can keep a copy in its thread, set any necessary parame-
ters, and do configuration-related computations.

• The loadAlgorithm hook is triggered when the main
thread is ready to initialize the algorithm. Within this
hook, the Agent can perform any algorithm-specific ini-
tialization tasks such as loading pre-trained models, set-
ting up data structures, or configuring internal variables.
After that it sends a success status message to the main
thread to indicate that it is ready to proceed with the in-
teraction.

• The processNoteEvent hook is triggered whenever
the main thread receives a note event from the user (i.e.,
event-based operation).

• The processClockEvent hook is triggered at every
clock tick, and receives the raw as well as the quantized
note events since the last tick. It enables synchronization
and music-time level processing (e.g., beat-level).

• The processAudioBuffer hook is triggered when a
new audio buffer is ready for processing. The frequency

4 Submitted to J. Audio Eng. Soc., 2023 June



DRAFT
DRAFT JAES TEMPLATE

MIDI 
Keyboard

On-screen 
Keyboard

Computer 
Keyboard Audio

Scheduler

MICP Packets

Agent Internal Logic (Provided by developers)

Interaction Data 
Archive

Visual 
Components

Audio 
Components

Fig. 1: Overview of the Euterpe architecture

at which this hook is triggered depends on the window
and hop size settings chosen by the developer.

• The processVariableUpdate hook is triggered
when the user interacts with the system’s GUI and
changes a UI element that corresponds to a variable or
hyper-parameter of the Agent.

These hooks are automatically triggered from the main
thread and offer developers the flexibility to implement var-
ious types of interaction logic within them. It is noted that
developers can also write agent logic outside these hooks or
even in external files that can be imported into the Agent’s
script.

3.3 Music Interaction Communication Protocol
(MICP)

The modular design of Euterpe (Sec. 2) can benefit from
designing a communication protocol between the Agent
and the main thread. By formalizing the communication
process, we aim to minimize errors by establishing a clear
understanding of the expected inputs and outputs. This
helps developers and researchers to easily plug in their
music interaction algorithms to Euterpe. We refer to this
protocol as the Music Interaction Communication Protocol
(MICP), and we use the term “packet” to refer to an object
that is transferred following the MICP.

A MICP packet is an object that contains two fields:
the hookType and the messages. The hookType field cor-
responds to the hooks discussed earlier in the Agent sec-
tion. When a packet is sent from the main thread to the
Agent, it specifies which hook should process the packet.
Conversely, when a packet is sent from the Agent to the
main thread, it indicates which hook generated the packet.

The messages field contains a list of messages that con-
vey various types of information from and to the Agent.
The reason for sending multiple messages within the same
packet (whenever possible) is to reduce the communication
overhead between the Agent and the main thread (see also
Sec. 3.4.2). Each message within a MICP packet consists

of two fields: messageType and content. The messageType
field indicates the type of the message and helps determine
how the content should be interpreted. In our implementa-
tion, we have defined several message types, including:

• status: It is used by the Agent to convey status infor-
mation to the main thread, based on which further ac-
tions can be triggered. For instance, when the Agent’s
loadAlgorithm hook successfully loads the music inter-
action algorithm, it sends a “success” message to indi-
cate that the initialization process is completed without
errors. After receiving such message, the main thread
may then start running the algorithm.

• quantized_notes: It is sent from the main thread
to the Agent on regular time intervals defined by a time
grid. It contains user note events quantized to the time
grid.

• note_list: It is used by both the main thread and the
Agent to transfer un-quantized note events.

• vector: It is used by the Agent to send results in the
form of a 1-d vector. The values of this vector will be
displayed using the vector widget (Sec. 3.6.6).

• label: It is used by the Agent to send short tex-
tual results. These will be displayed in the label widget
(Sec. 3.6.6).

More details on how the main thread utilizes the
quantized_notes and note_list message types is
illustrated in Figure 2 and explained in details in Sec. 3.4

3.3.1 NoteEvent Object
As mentioned earlier, when the message is of type

note_list or quantized_notes, it contains a list of
note event objects. These note event objects are designed
as a generalization of MIDI note events, with additional
fields that are specifically useful for Euterpe’s internal op-
erations:

Submitted to J. Audio Eng. Soc., 2023 June 5



DRAFT
ZANG, BENETATOS AND DUAN DRAFT

ticks

A

B

C

E

F

CurrentPast Future

D

FonEon
Doff

Boff

Fon Eon Chold

Don

t = -1 t = 0

Fon Eon

Note List

Quantized Notes

Note List

Quantized Notes
Boff

Boff

hookType hookType

hookType processClockEvent

Fig. 2: An example of how the Scheduler processes the user’s input, on grid-based mode.

• player: the player associated with the note event (e.g.,
Human or agent)

• instrument: the sampler instrument to be used to
play this note

• eventSource: the source of the note event (Sec. 3.1)
• name: the name of the note event, if available (e.g.,

“C4”)
• type: the articulation of the note event which can be

On, Off or Hold
• midi: the MIDI value of the note event
• chroma: the chroma value of the note event
• channel: the MIDI channel of the note event
• velocity: the velocity value of the note event
• createdAt: the creation timestamp of the note event
• playAfter: the timestamp indicating when the note

event should be played after
• duration: the duration value of the note event, used

only by the Agent, for notes that their duration is known

It is important to note that all the time-related fields
(createdAt, playAfter, and duration) are not
scalar values but objects, describing time using a combi-
nation of ticks (quantized time) and seconds (continuous
time). For instance, a note event generated by the Agent,
with playAfter = {tick: 2, seconds: 0.3} will be
sent to the main thread and scheduled to play after 2 clock
ticks and 0.3 seconds with ticks being addressed initially,
followed by the seconds delay). This combination of tick
and physical timings enables sophisticated note schedul-
ing, potentially allowing support for a grid-based agent that
is able to generate notes with micro-timing variations for a
more expressive performance.

3.4 Scheduler
As previously mentioned, the Scheduler functions as the

“brain” of Euterpe. For note and audio inputs, the Sched-
uler implements two sets of logic as detailed below.

3.4.1 Note Scheduling
Grid-based. We implemented a “Clock” module that

sends out “ticks” every clock period, which we use to sup-
port music interaction algorithms that need to sync their
input and output operations to a time grid, such as Bach-
Duet and RL-Duet. The developer determines the Clock’s
period in two ways: either explicitly, by setting the period
of the Clock in seconds, or implicitly, by specifying the
tempo in beats per minute (BPM) and the ticks per beat.

In grid-based systems that require the time grid to be
adjustable, we provide a user-controllable tempo slider,
which allows the user to change the Clock period on the
fly. We also integrate an optional safe-keeping feature to
alert the user when the Agent’s processing time exceeds
the Clock’s period, as this would make it difficult to sync
to the correct tick.

Another two critical tasks the Scheduler performs are:
1) the temporal quantization of the user’s input on the
time grid defined by the Clock and 2) the application of
polyphony constraints on the user’s quantized input. These
polyphony constraints are essential in cases where inter-
active music systems operate under specific polyphony
requirements, such as BachDuet which expects a mono-
phonic input by the user. For instance, if the system is
designed for 2-voice polyphony and the user activates 3
notes, the Scheduler removes the note with the oldest on-
set to adhere to the predefined constraints. In Fig. 2, we
provide a diagram illustrating these two tasks related to the
user’s input stream. The horizontal time-tick axis shows
tick positions (denoted as × label); the green bars rep-
resent the user’s MIDI input stream. At every tick, the
MICP packet sent to the Agent has hookType equal to
processClockEvent and contains two messages. The
first is of type note_list and includes all the new user
note events that happened since the last tick. The second
is of type quantized_notes and contains a list of the
quantized and polyphony-constrained user note events for
the current tick.

6 Submitted to J. Audio Eng. Soc., 2023 June



DRAFT
DRAFT JAES TEMPLATE

Additionally, in Fig. 2, the reader will notice a slight
time delay between the tick (× label) and the dispatch of
the MICP packet to the Agent (◦ label); this is to make Eu-
terpe robust to slight involuntary misalignments between
user input and the metronome. For strict grid-based inter-
actions, where the user has to align their input to the tick
of a metronome, even the slightest misalignment with the
metronome could cause the event to be registered on the
next tick than the one the user intended. For example, in
our figure, the user’s intention was to play the notes A, B,
and C simultaneously as a chord on tick −1; however we
can see that the B note’s onset happened after the tick. This
small time delay between the tick onset and the MICP dis-
patch ensures that the B note will be included in the same
group along A and C.

The developer can set the amount of delay; however,
they should be careful of providing enough time for the
Agent to process the packet before the next tick. No-
tice that the note_list message does not contain the
note C since its “on” and “off” events occurred before
and after the current tick. However, it appears in the
quantized_notes message as a “hold” event (when
the polyphony is larger than 2). On the other hand, the
note D is included in the note_list but not in the
quantized_notes, since its duration was less than the
Clock’s period.

Event-based. These are systems that do not operate on
a time grid. In this case the Scheduler’s job is much easier.
In event-based mode, whenever the Scheduler receives an
event from the user’s input stream, it instantly dispatches
it to the Agent using a MICP packet with hookType
equal to processNoteEvent and a message of type
note_list which contains that single note event.

If needed, the Scheduler can operate on both grid-based
and event-based operations simultaneously.

3.4.2 Audio Scheduling
Audio scheduling differs from note scheduling in some

important aspects. As we described in Sec. 3.4.1, notes
played by the user would first go to the Scheduler, undergo
processing if necessary, and then be relayed to the Agent
through a MICP packet (via the postMessage method).
However, due to the finer time granularity of audio com-
pared to note events, as well as the overhead associated
with postMessage, this method is not suitable for en-
suring uninterrupted flow of audio samples to the Agent.
To address this, we employ a more immediate means of
communication between the Scheduler and the Agent by
utilizing SharedAudioBuffers. These buffers allow for in-
stantaneous sharing of data among different processes, en-
suring that changes made by one process are immediately
visible to others with access to the shared buffer.

More specifically, we use the ringbuf.js library that
allows us to create a ring buffer based on a SharedAu-
dioBuffer object. This ring buffer operates on a single-
consumer single-producer model, allowing for efficient
sharing of audio data between two processes. The maxi-
mum delay introduced by this buffer is equal to the size of

the underlying SharedAudioBuffer, which can be config-
ured by the user.

The initialization of the ring buffer takes place in the
main thread, and it is shared with both the Audio Recorder
and the Agent during the initialization stage. Once initial-
ized, the main thread (Scheduler) no longer interacts with
the ring buffer. The Audio Recorder assumes the role of
the “producer”, responsible for pushing audio samples into
the ring buffer, while the Agent serves as the “consumer”,
responsible for reading the samples at regular intervals. To
ensure smooth operation, it is essential that the Agent reads
the samples from the ring buffer at a rate equal to or faster
than the AudioRecorder writes to it. This prevents buffer
overflow and loss of audio samples. By maintaining this
requirement, we can achieve seamless audio data transfer
between the AudioRecorder and the Agent.

The agent also performs the task of creating audio
frames based on a window size, w, and a hop size, h, spec-
ified by the developer. When audio samples are retrieved
from the ring buffer, they are added to an internal FIFO
queue with a size equal to the window-size. Every h au-
dio samples, a new audio frame with length w is created
from the current state of the queue. This audio frame is
then passed to the processAudioBuffer hook, which
allows for further processing of the audio frame.

A similar process is used for sending audio samples gen-
erated by the Agent to the Audio Player. In this case, a
new ring buffer is shared between the Agent and the Au-
dio Player, but with the Agent serving as the producer and
Audio Player serving as the consumer.

3.5 Audio Components
3.5.1 Audio Recorder and Player

To handle audio input and output, we utilize Au-
dioWorklets, which serve as the Audio Recorder and
Audio Player components. The Audio Recorder captures
audio input from the user’s device and sends it to be fur-
ther processed by the Agent. On the other hand, the Audio
Player receives audio data from the Agent and plays it
back through the output device, allowing the user to hear
the generated music in real-time. Details on how the Audio
Recorder and Audio Player worklets communicate with
the main thread and the Agent can be found in Sec. 3.4.2.

3.5.2 Sampler Instruments
As the primary audio component for note events, we

provide an interface for creating sampler instruments that
use concatenative synthesis to generate audio for note se-
quences in real time. Each sampler instrument comprises
audio samples corresponding to individual notes; when a
note is triggered, its corresponding sample is played. For
more dynamic performance, the velocity of a given note
determines the playback volume for its corresponding sam-
ple. Euterpe’s sampler instruments are implemented via the
web audio framework Tone.js [28].

Submitted to J. Audio Eng. Soc., 2023 June 7



DRAFT
ZANG, BENETATOS AND DUAN DRAFT

3.6 Visual Components
Euterpe offers a range of visual components or widgets,

that are synchronized with the Scheduler to display real-
time information about the interaction. These widgets are
adaptive in nature, as their content and behavior directly
depend on the entries specified in a configuration file by
the developer (Sec. 3.7).

3.6.1 Score
Western modern staff notation, referred to as “score”

here, is a widely recognized and utilized musical notation
system, and has been integrated into Euterpe. This inclu-
sion aims to provide a familiar and intuitive interface for
musicians who are accustomed to reading and interpret-
ing music in score notation. VexFlow.js [29], a library
that provides an interface for a Scalable Vector Graphics
(SVG) score, is used to implement the score notation. At
each clock tick, the notes are drawn on the graph, and a
scrolling animation is triggered to ensure that the currently
displayed section of score notation corresponds to the cur-
rent interaction. Due to the complexity of implementing
a polyphonic score notation engraving algorithm, we cur-
rently only support monophonic voices for the grid-based
operation mode.

3.6.2 Piano Roll
The rising popularity of music sequencing software,

Digital Audio Workstations (DAWs), and musical games
has led to widespread user familiarity with piano roll nota-
tion. In this notation system, each note is represented as a
rectangle, with one dimension indicating the pitch and the
other indicating the timing. Euterpe has also integrated this
notation system by leveraging Three.js [30], a graph-
ical library that facilitates the creation and display of 3D
computer graphics. Similar to A.I. Duet [17], an ortho-
graphic camera perspective is utilized to produce a 2D vi-
sual effect. The piano roll is synchronized with note events,
where user and agent outputs correspond to note rectan-
gles with different colors. Contrary to the score notation,
Piano roll supports polyphonic voices in both event-based
and grid-based operation modes.

3.6.3 Settings Window
The Settings window in Euterpe offers end users the

ability to adjust various interaction settings, such as the
BPM (clock speed) and selection of an external MIDI de-
vice. It additionally includes interactive elements such as
buttons, sliders, and switches. The amount and behavior of
these elements is adaptive and can be easily customized by
developers through the configuration file.

3.6.4 Mixer Widget
The Mixer widget in Euterpe is an audio mixer designed

to control the volume and mute status of each instrument
belonging to the players involved in the interaction. The
content of the Mixer widget is automatically populated
based on the players and instruments defined in the config-
uration file. This dynamic behavior ensures that the mixer

interface accurately reflects the structure of the interaction
and the audio elements involved.

3.6.5 Monitor Widget
The Monitor widget serves as a non-interactive tool de-

signed to monitor real-time changing variables of the inter-
action. Its purpose is to provide developers and end users
with insights into the system’s behavior and assist in track-
ing and analyzing specific parameters. It can only be used
to track floating-point values and it offers two ways to
present the monitored data: a text format and a 1-d rolling
graph. Developers can customize the widget by adjusting
the configuration file to specify the variables they want to
monitor, set the frequency of value updates, and choose be-
tween the text or graph display format.

3.6.6 Other Widgets
• Label Widget: This is a straightforward text box that is

used to displaying text sent from the Agent to the main
thread. It serves as a convenient tool for presenting small
textual elements such as chord or key labels.

• Vector Widget: This is a bar plot designed to show-
case the values of a one-dimensional array sent from
the Agent. This array can represent various data, such
as probability predictions for different classes, audio
chroma vectors, and more. To configure the widget, the
developer needs to specify the desired number of bins as
well as optional labels for each bin in the configuration
file.

• Spectrum Widget: A widget that provides a visual rep-
resentation of the frequency content of the user’s audio
input.

3.7 Global Configuration
To allow developers to easily customize the system,

we provide a unified interface for configuring interaction
logic and color palette. For interaction logic, we supply
a YAML-format configuration file that specifies settings
such as tempo, interaction mode, window and hop size for
audio and other interaction related parameters. The con-
figuration file also allows developers to specify the ap-
plication title, introduction text, and agent related hyper-
parameters. Additionally, the developers can specify the
instrument types available to the end user and the Agent,
as well as the behavior and types of information to be dis-
played by the GUI widgets (Sec. 3.6). Finally, we provide
a Cascading Style Sheets (CSS) file that defines the color
palette for the system. By modifying this CSS file, devel-
opers have the ability to easily customize and define the
color scheme for all components in the application.

3.8 Deployment
Euterpe can be deployed as a SPA using Webpack, a

module bundler. At build time, a Euterpe application’s de-
pendency graph is analyzed by Webpack, with all depen-
dencies converted into a unified format. The resulting out-
put bundle contains all the code and assets necessary to
run the entire web application in the user’s browser envi-

8 Submitted to J. Audio Eng. Soc., 2023 June



DRAFT
DRAFT JAES TEMPLATE

ronment, with a single webpage as the application’s entry
point. This process happens automatically with each build
without the need for manual user intervention. Therefore,
Euterpe can be deployed with readily available web page
hosting sites, such as Heroku, Netlify, or GitHub Pages, or
be deployed as a standalone offline application with frame-
works like Electron or NW.js.

4 CASE STUDIES

4.1 BachDuet
To demonstrate the deployment process of a sym-

bolic music based system with Euterpe, we choose Bach-
Duet [13] as an example. BachDuet enables a human per-
former to improvise a real-time duet counterpoint with a
computer agent in Baroque style. The concept of this inter-
action is illustrated in Fig. 3. The input to the system is a
human musician’s monophonic MIDI performance, while
the output is the Agent’s monophonic performance in real
time generated by a Recurrent Neural Network (RNN).

As a neural-network based real-time interaction system,
the deployment of BachDuet poses unique challenges and
allows us to showcase many Euterpe features. We present
both user data analysis from passively collected metadata
from the published website, as well as a more focused sub-
jective evaluation involving ten end-user participants. The
final system is deployed at https://bachduet.com.

4.1.1 GUI
Since BachDuet is an interactive music system in the

Baroque style, an easy-to-use interface for classically-
trained musicians is needed. Therefore, besides the Piano
Roll notation, we also enable the Score notation compo-
nent.

We further customize the color by specifying the CSS
variables, which automatically changes the entire applica-
tion’s color palette. Also, we injected custom CSS to cus-
tomize the on-screen keyboard’s appearance further. The
final GUI is illustrated in Figure 4

4.1.2 Configuration
As we briefly introduced in Sec. 1.1, this is a MIDI in-

teraction system that uses a sixteenth-note time grid, which
means that we have a grid-based interaction mode that uses
the Clock to create the time grid. In the clockSettings

BachDuet Predicts

current note by user

Past Context

Fig. 3: The interaction concept of BachDuet

Fig. 4: Screenshot of BachDuet GUI

block, we set the Clock to tick four times per beat. The
user’s monophonic MIDI input stream is temporally quan-
tized based on the sixteenth-note time grid, and the only
time signature it supports is 4/4. Since the interaction is
monophonic and grid-based, we can also enable the Score
visualization. Based on the descriptions above, we provide
part of the configuration file in Listing 1.

title: "BachDuet"
subtitle: "Baroque-style AI"
interactionMode:

noteMode: true
audioMode: false

noteModeSettings:
eventBased: false
gridBased: true
polyphony:

input: 1
output: 1

clockSettings:
ticksPerBeat: 4
timeSignature:

numerator: 4
denominator: 4

tempo: 90
clockPeriod: null

agentSettings:
warmupRounds: 2
randomness: 0

gui:
score: true
pianoRoll: true

Listing 1: Configuration file for BachDuet

4.1.3 Agent
Before implementing the Agent logic, an important pre-

liminary step is to convert the neural network model into
a format compatible with JavaScript libraries that sup-
port neural network inference. For BachDuet, we choose
TensorFlow.js. This step is necessary not only for the

Submitted to J. Audio Eng. Soc., 2023 June 9

https://bachduet.com


DRAFT
ZANG, BENETATOS AND DUAN DRAFT

deployment of BachDuet but also for any other neural-
network based agent.

In the loadConfig hook, the Agent receives the con-
figuration from the main thread and stores it in a local vari-
able. BachDuet also relies on an external JSON dictionary
loaded in this hook, which contains the mapping between
MIDI numbers and neural network tokens.

In the loadAlgorithm hook, we initialize
TensorFlow.js, then we load the neural network’s
weights and we run a few warm-up rounds. Finally, a
MICP packet is sent to the main thread stating that it is
ready for interaction.

In the processClockEvent hook, we take the user’s
latest MIDI input quantized to the current clock tick and
the Agent’s previous output, then run an inference step to
generate the next note to be played by the Agent.

4.1.4 Deployment
To deploy the website, we use the web page hosting ser-

vices provided by Netlify. We created a GitHub repository1

that hosts the source code, then connects the push action
to Netlify. Netlify runs the build command on each push,
then sets the Webpack bundle as the website root direc-
tory, as mentioned in Sec. 3.8. This allows us to utilize the
free webpage hosting service of Netlify, including a Se-
cure Sockets Layer (SSL) certificate from “Let’s Encrypt,”
allowing for HTTPS connections.

4.1.5 Feedback
BachDuet was initially launched in May 2022. As of its

one-year anniversary, the site recorded a total of 794 musi-
cal interactions with its users. The breakdown of user inter-
actions across different operating systems was as follows:
Windows users accounted for 360 interactions, Macintosh
users similarly accounted for 360, Linux users had 50 in-
teractions, and tablet users (such as those using Chrome

1https://github.com/yongyizang/BachDuet-WebGUI

Fig. 5: Box plot of ratings of Questions 4 to 9 received from
all ten participants. Higher values indicate better agreement
with the questions. Median of each box is shown as the blue
line. The top and bottom of each box represent the 25 and
75 percentiles, respectively. Outlines are shown as circles.

OS and iPadOS) had 24 interactions. An integral aspect of
the web user experience is the loading time; based on the
recorded data, 36.4% of users were able to load the entire
webpage within 1 second, and 90.0% of users loaded the
webpage within 3.5 seconds.

For a more in-depth understanding of the user experi-
ence, we solicited feedback from ten participants who had
no previous interaction with BachDuet. The participants
were asked to interact with the platform and subsequently
complete a questionnaire, which contains the following
questions:

1. Which types of input methods did you use? (Participants
can choose computer keyboard, MIDI keyboard or on-
screen keyboard.)

2. Can you estimate the approximate duration of your in-
teraction with the system? (Participants can choose <1
minute, 1-5 minutes, 5-10 minutes or 10-30 minutes.)

3. What device are you currently using to play with this
system?

4. Do you find the GUI easy/intuitive to use? (scale 1-10)
5. Do you find the GUI to be simple and uncluttered?

(scale 1-10)
6. Do you find the visualizations to be accurate compared

to your actual input? (scale 1-10)
7. Does the GUI clearly reflect the notes and timeline

of the real-time interaction between you and the com-
puter? (scale 1-10)

8. Do you find the GUI allows you to quickly and easily
perform tasks, like changing BPM, changing volume?
(scale 1-10)

9. What’s your rating of your interaction with BachDuet?
(scale 1-10)

For Questions 4 to 9, a higher value indicates higher
agreement with the question. An additional open-ended
question was also included at the end to encourage par-
ticipants to provide further comments.

Regarding the first three questions, six participants re-
ported using a computer keyboard for interactions, three
used a combination of the on-screen and computer key-
boards, and one used a MIDI keyboard. Three participants
engaged for a span of 1-5 minutes, the majority of five par-
ticipants interacted for a duration of 5-10 minutes, and the
remaining two reported a longer interaction time of 10-30
minutes. All participants used a laptop, and specifically,
four participants were Macintosh users with the remaining
six using Windows.

Boxplots of scores for Questions 4 to 9 are shown in Fig-
ure 5. The data suggests a favorable perception of the user
interface by participants, particularly in terms of intuitive-
ness (Q4), simplicity and clean design (Q5), accuracy on
visualizations of user input (Q6), and clarity of GUI in re-
flecting the real-time interaction (Q7). Overall, participants
were positive about their interaction with BachDuet (Q9).
In open-ended responses, participants commented that the
system was “very fluid and responsive”, and they had “a
very nice and smooth experience” and “really liked the
general UI”.

10 Submitted to J. Audio Eng. Soc., 2023 June



DRAFT
DRAFT JAES TEMPLATE

The survey responses also indicated a potential area
for improvement in system controllability (Q8). From the
open-ended responses, it is evident that users had specific
feature requests, some of which were related to Euterpe as
a whole, while others specifically pertained to the Bach-
Duet system. Regarding Euterpe, users expressed a desire
to have additional functionality, such as the ability to pause,
rewind, and replay previously generated music. They also
requested the flexibility to customize the mapping of the
computer keyboard to MIDI notes. Furthermore, four users
requested a direct export feature that would allow them to
save the interaction data as a MIDI file.

4.2 JazzImprov
To better illustrate the real-world experience of de-

ployment with Euterpe, we invited Yiyang Wang, an in-
teractive music system researcher and musician, to de-
velop and deploy her JazzImprov. Unlike BachDuet, Jazz-
Improv accepts audio input and outputs MIDI events,
making it an ideal test case for evaluating Euterpe’s au-
dio capabilities. The prototype of the system can be
found under the deployed systems section in https://
euterpeframework.org.

Details of the system’s design are shown in Fig. 6. Jazz-
Improv allows a human performer to improvise with a
computer-generated backing track that emulates a Jazz trio
band consisting of Piano, Double Bass, and Drums. The Pi-
ano voice plays chords generated by an RNN based on cur-
rent human input and prior interaction history. The RNN
first generates probabilities for each of the 12 notes, and
uses rule-based logic to extract the most probable chord.
The Drums, and Double Bass parts are generated based on
the chord predictions using rule-based logic.

4.2.1 GUI
Given the audio-based nature of JazzImprov, Yiyang

needed to provide visual representations of audio interac-
tions. For this purpose, she selected the Spectrum Widget
and added RMS and perceived loudness values to the Mon-
itor Widget. She used the the Vector Widget to visualize
her model’s raw probability outputs (12-d vector). Addi-
tionally, the model’s predicted chord is displayed using a

Fig. 6: Overview of JazzImprov interaction system

Label Widget in real-time. Finally, to monitor the model’s
performance, Yiyang added her agent’s inference time to
the Monitor Widget as well. The final GUI is illustrated in
Fig. 7.

4.2.2 Configuration
As we described earlier, JazzImprov supports both au-

dio and MIDI modes so we enable the audio functionality
using the audioMode flag and audioModeSettings
block. Similarly to BachDuet, the system’s music output
is alignment to a 16th note grid; The chord predictions are
generated once every beat, while the Drums and Double
Bass tracks are generated on every 16th note. As for the
GUI, all of the visual components are enabled 3.6, except
for the score which is not functional when taking audio
input. Part of the configuration file for JazzImprov is pro-
vided in Listing 2.

4.2.3 Agent
As another neural-network based system, JazzImprov

shares similar loadConfig and loadAlgorithm
hooks with BachDuet.

Inside the processAudioBuffer hook, Yiyang
added the audio frame-level feature extraction. She used
Meyda.js to convert the raw audio frames into a chroma
vector representation. Each chroma vector is pushed to a
queue that exists within the scope of the Agent. This queue
serves as a storage mechanism for the chroma features
extracted from the audio frames.

The processClockEvent hook is triggered by the
main thread on every clock tick (16th note). Within this
hook, JazzImprov performs the inference of the RNN
model every four ticks, as the model operates on the beat
and quarter note level. At each interval of four ticks, Jazz-
Improv accesses the chroma queue, which is populated
by the processAudioBuffer hook, runs the RNN in-
ference using the chroma vectors, and then empties the
queue to prepare for the next batch of chroma vectors. At
the same time, within the processClockEvent hook,
JazzImprove also runs an rule-based algorithm that gener-
ates drums, bass, and the piano rhythm, at every tick.

Fig. 7: Screenshot of JazzImprov GUI

Submitted to J. Audio Eng. Soc., 2023 June 11

https://euterpeframework.org
https://euterpeframework.org


DRAFT
ZANG, BENETATOS AND DUAN DRAFT

title: "JazzImprov"
subtitle: "An AI JazzTrio"
interactionMode:

noteMode: true
audioMode: true

noteModeSettings:
eventBased: false
gridBased: true

audioModeSettings:
input: true
output: false
windowSize: 2048
hopSize: 1024

clockSettings:
ticksPerBeat: 4
timeSignature:

numerator: 4
denominator: 4

tempo: 90
clockPeriod: null

agentSettings:
warmupRounds: 2

gui:
score: false
pianoRoll: true
vectorWidget: true
labelWidget: true
spectrumWidget: true

Listing 2: Configuration file for JazzImprov

4.2.4 Deployment
To deploy the website, Yiyang followed similar steps as

BachDuet to deploy using Netlify. In the interest of sim-
plicity, we skip the details. At the time of this paper’s writ-
ing, the source code repository for Yiyang’s web applica-
tion is not open-sourced; we will update Euterpe’s website
with the repository link once it is publicly released.

4.2.5 Feedback
The opportunity to collect feedback from an external re-

searcher who has thoroughly explored Euterpe and suc-
cessfully deployed an interaction system with it is very
valuable. To gather comprehensive comments, we de-
signed a questionnaire containing open-ended questions
for Yiyang to detail her experience. Her responses are as
follows:

• Have you implemented your algorithm into a prototype
in other languages/platforms? If yes, how long, roughly,
did you spend in building the interface and application
side of the prototype?
Yes. I spent roughly 60 hours in
total (used Max and Python, proficient
in both).

• How “portable, shareable, and accessible” do you think
your previous application was, on a scale of 1 to 10?

Higher values are better.
4. Max/MSP supports multiple coding
platforms; however, the application
had OS-specific dependencies, making
it not quite portable.

• Do you have any background in terms of web program-
ming? If yes, can you specify your background?
Yes. I had some experience with JavaScript
(1000 lines of code in single projects),
and some working knowledge of general
website structure (html, css, etc.)
and limited experience on Python
web frameworks (Django, Flask). I
haven’t built a standalone website
from frameworks previously.

• How long did it take, roughly, for you to implement
your application as a webpage using Euterpe?
I used a time-tracking tool to track
the entire application development
process; it took 15 hours in total,
starting from the template provided
by Euterpe. This did not include the
time in exporting the neural network
from PyTorch to TensorFlow.js which
took around 5 hours.

• How long do you think it may take, roughly, for you to
implement your application as a webpage without using
Euterpe?
More than 400 hours. It’s going to be
a headache to figure out the GUI and
the system’s overall structure.

• How “portable, shareable, and accessible” do you think
the newly built application is, on a scale of 1 to 10?
Higher values are better.
9. The web-based nature of Euterpe
extends a natural layer of portability
and accessibility.

• What do you think are the strongest strengths of Eu-
terpe?
Euterpe abstracts away the ‘‘dull’’
process of web user interface design
and the tricky data transport specifications.

• What do you think are the most prominent weaknesses
of Euterpe?
The UI components have only limited
options to customize directly from
the config files, so if the developer
or researcher is aiming for something
quite different, more intricate changes
to the overall framework need to be
made. Better documentation needs to
be written for that purpose as well.

This feedback highlights Euterpe’s ability to facilitate
the prototype deployment process. Euterpe achieves this
through its abstraction of the system, which only exposes a
limited number of agent hooks, thereby simplifying the de-
velopment process. That being said, this simplification also
limits the options for the researchers, as Yiyang pointed out

12 Submitted to J. Audio Eng. Soc., 2023 June



DRAFT
DRAFT JAES TEMPLATE

as an area for improvement. Taking into consideration her
constructive critique, our ongoing objective is to expand
our range of widgets to cater to the diverse needs of devel-
opers, while also extending the documentation to support
those seeking further customization of Euterpe.

5 FUTURE WORK

Euterpe is an active project, and we are committed to en-
hancing its features to provide better support for a broader
range of interactive music systems. We have outlined a
roadmap of enhancements and features for Euterpe, ranked
from short-term to long-term priorities:

• Exporting audio and MIDI. Even though the interac-
tion data are stored internally in Euterpe, we do not pro-
vide the option to directly export the symbolic or au-
dio interaction history in popular formats such as MIDI,
PDF or WAV. This is a feature that many end users, as
well as our independent developer, asked.

• Performing assessment under diverse scenarios. Web
applications run on diverse browser platforms from a
wide range of devices. Testing Euterpe across diverse
platforms and devices will provide us with insights about
its robustness under various real-world conditions.

• Extending polyphony constraints. Currently we are
only applying polyphony constraints on the quantized
notes during grid-based operation. Our next step is to
apply the polyphony constraints directly at the user’s
un-quantized input events. Additionally, since currently
we only support “last” priority (the last note played by
the user has higher priority), We also want to implement
other types of priorities, such as “highest” and “lowest”.

• Supporting server based agents. Another area of fu-
ture work for Euterpe is to enable interactions with
agents that run on remote servers instead of the browser.
While this may not be suitable for real-time simultane-
ous interactions with strict deadlines, it can be valuable
for real-time interactions with more flexible timing re-
quirements. Additionally, working with larger models,
such as audio language models, may necessitate running
agents on remote servers due to resource constraints.

• Conditioning on external material. Score-driven inter-
active music systems (as defined in [1]) may require ex-
ternal material, such as chord sequences or MIDI files.
We plan to add support for importing external material
to better adhere to those systems’ needs.

• Looping based interactions. We also aim to support a
looping-based music interaction paradigm that involves
both the user and the Agent. In this interaction mode,
users create and manipulate musical loops, while also
enabling the Agent to contribute its own layers to the
loop. Users will have the ability to record their own mu-
sical phrases or sounds, overlay them with the Agent’s
generated material, and explore new musical possibili-
ties through iterative layering.

• Polyphonic and free time score notation. We plan to
expand the capabilities of the score notation visualiza-
tion. As mentioned in 3.6.1, The score notation is limited

to displaying monophonic note sequences with a prede-
fined time grid and a known time signature.

• Visual input methods. Besides musical input, there are
interactive music systems that use visual input methods
such as dance moves or hand gestures to interact with
music [31]. Thus, we plan to introduce support for web
cameras as input and transmit video information to the
Agent.

• Better mobile device support. As of now, Euterpe is de-
signed for desktop devices, not taking advantage of in-
teraction methods available on touchscreen devices. To
address this limitation, we plan to introduce new visual
components specifically designed for mobile devices,
such as a multi-touch on-screen keyboard.

• Multi-player mode. The current design of Euterpe as-
sumes a two-player interaction system with one human
player and one agent. We plan to introduce a multi-
player interaction mode to provide broader support.

6 CONCLUSION

In this work, we presented Euterpe, a prototyping web
framework, designed to simplify the deployment process
of interactive music systems on the web. By leveraging the
web’s cross-platform compatibility, Euterpe enhances the
accessibility and potential impact of these systems. Our fo-
cus was on reducing the development burden by handling
JavaScript aspects such as real-time input streams and data
synchronization, allowing developers to focus on their core
algorithms. Additionally, Euterpe offers a series of widgets
for data visualization, further helping developers in creat-
ing an engaging prototype.

To demonstrate the capabilities of Euterpe, we con-
ducted case studies of the deployment of two neural net-
work music improvisation systems.The first system was
BachDuet, a MIDI-based improvisation system that has
been accessed by hundreds of end users on the web. Sub-
jective evaluation revealed a high level of approval and pos-
itive user experience regarding the interface of BachDuet.
The second system was JazzImprov, an audio-based impro-
visation system developed by an independent researcher.
The researcher reported that she was able to create a work-
ing prototype in one-third of the time it took to implement
using her previous approach. This feedback suggests that
Euterpe can be a valuable tool in accelerating the develop-
ment process of interactive music systems.

Euterpe is under active development, and we plan on
adding more features to support a wider range of interac-
tive music systems as well as addressing the needs of re-
searchers and end users.

7 ACKNOWLEDGMENT

This work has been partially funded by the National Sci-
ence Foundation grants Nos. 1846184 and 2222129. We
thank Yiyang Wang for her feedback, bug reports, and fea-
ture suggestions in the case study of the deployment of her
JazzImprov system with Euterpe. We also thank Tianyu

Submitted to J. Audio Eng. Soc., 2023 June 13



DRAFT
ZANG, BENETATOS AND DUAN DRAFT

Huang for his assistance in the early stages of the devel-
opment.

8 REFERENCES

[1] R. Rowe, Interactive music systems: machine listen-
ing and composing (MIT press, 1992).

[2] K. Tatar and P. Pasquier, “Musical agents: A typol-
ogy and state of the art towards Musical Metacreation,”
Journal of New Music Research, vol. 48, no. 1, pp. 56–105
(2019).

[3] T. Winkler, Composing Interactive Music: Tech-
niques and Ideas Using Max (MIT press, 2001).

[4] R. Rowe, “The Aesthetics of Interactive Music Sys-
tems,” Contemporary Music Review, vol. 18, no. 3, pp. 83–
87 (1999).

[5] H. Flores Garcia, A. Aguilar, E. Manilow, D. Ve-
denko, and B. Pardo, “Deep Learning Tools for Audac-
ity: Helping Researchers Expand the Artist’s Toolkit,” pre-
sented at the 5th Workshop on Machine Learning for Cre-
ativity and Design at NeurIPS 2021 (2021).

[6] L. Wyse and S. Subramanian, “The Viability of the
Web Browser as a Computer Music Platform,” Computer
Music Journal, vol. 37, no. 4, pp. 10–23 (2013).

[7] S. Pfeiffer, “HTML5 Audio API,” in The Definitive
Guide to HTML5 Video, pp. 223–245 (Springer, 2011).

[8] J. Jacobs, “From Prototype to Product: Deployment
strategies in computer science research,” XRDS: Cross-
roads, The ACM Magazine for Students, vol. 23, no. 1, pp.
5–6 (2016).

[9] R. B. Dannenberg, “Languages for Computer
Music,” Frontiers in Digital Humanities, vol. 5
(2018), doi:10.3389/fdigh.2018.00026, URL https://
www.frontiersin.org/articles/10.3389/
fdigh.2018.00026.

[10] S. Ji, J. Luo, and X. Yang, “A Comprehensive
Survey on Deep Music Generation: Multi-level Represen-
tations, Algorithms, Evaluations, and Future Directions,”
arXiv preprint arXiv:2011.06801 (2020).

[11] G. E. Lewis, “Too many notes: Computers, com-
plexity and culture in” voyager”,” Leonardo Music Jour-
nal, pp. 33–39 (2000).

[12] J. Biles et al., “GenJam: A Genetic Algorithm
for Generating Jazz Solos,” presented at the International
Computer Music Conference, vol. 94, pp. 131–137 (1994).

[13] C. Benetatos, J. VanderStel, and Z. Duan, “Bach-
Duet: A Deep Learning System for Human-Machine Coun-
terpoint Improvisation,” presented at the Proceedings of the
International Conference on New Interfaces for Musical
Expression (2020).

[14] N. Jiang, S. Jin, Z. Duan, and C. Zhang, “Rl-duet:
Online Music Accompaniment Generation Using Deep Re-
inforcement Learning,” presented at the Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp.
710–718 (2020).

[15] C. Donahue, I. Simon, and S. Dieleman, “Piano
genie,” presented at the Proceedings of the 24th Interna-
tional Conference on Intelligent User Interfaces, pp. 160–
164 (2019).

[16] C. Donahue, “Piano Genie,” https://imaginary.github.io/
piano-genie/ (accessed Mar. 10, 2023).

[17] Y. Mann, “A.I Duet,” https://experiments.withgoogle.com/
ai/ai-duet/view/ (accessed Mar. 10, 2023).

[18] F. Pachet, “The continuator: Musical interaction
with style,” Journal of New Music Research, vol. 32, no. 3,
pp. 333–341 (2003).

[19] L. Turchet, C. Fischione, G. Essl, D. Keller, and
M. Barthet, “Internet of Musical Things: Vision and Chal-
lenges,” IEEE Access, vol. 6, pp. 61994–62017 (2018 09),
doi:10.1109/ACCESS.2018.2872625.

[20] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Al-
fozan, and J. Zou, “Gradio: Hassle-free sharing and
testing of ml models in the wild,” arXiv preprint
arXiv:1906.02569 (2019).

[21] T. Wolf, L. Debut, V. Sanh, J. Chaumond,
C. Delangue, A. Moi, et al., “Transformers: State-
of-the-Art Natural Language Processing,” presented
at the Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pp. 38–45 (2020 Oct.), doi:
10.18653/v1/2020.emnlp-demos.6, URL https://
aclanthology.org/2020.emnlp-demos.6.

[22] S. Raschka, J. Patterson, and C. Nolet, “Machine
Learning in Python: Main Developments and Technology
Trends in Data Science, Machine Learning, and Artificial
Intelligence,” Information, vol. 11, no. 4, p. 193 (2020).

[23] M. Puckette, D. Zicarelli, et al., “Max/MSP,” Cy-
cling, vol. 74, pp. 1990–2006 (1990).

[24] V. J. Manzo, Max/MSP/Jitter for music: A Prac-
tical Guide to Developing Interactive Music Systems for
Education and More (Oxford University Press, 2016).

[25] D. Fober, S. Letz, et al., “FAUST: an efficient func-
tional approach to DSP programming,” (2009).

[26] M. D. Network, “Web Workers API,” https:
//developer.mozilla.org/en-US/docs/
Web/API/Web_Workers_API, accessed on June 6,
2023.

[27] M. D. Network, “Web Workers API,” https://
developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/
SharedArrayBuffer, accessed on June 6, 2023.

[28] tonejs, “Tone.js,” https://tonejs.github.io/ (accessed
Mar. 15, 2023).

[29] L. K. Mohit Muthanna Cheppudira, Michael
Scott Cuthbert et al., “VexFlow,” https://github.com/0xfe/
vexflow (accessed Mar. 15, 2023).

[30] mrdoob, “Three.js,” https://threejs.org/ (accessed
Mar. 15, 2023).

[31] T. Winkler, “Making Motion Musical: Gesture
Mapping Strategies for Interactive Computer Music,” pre-
sented at the International Computer Music Conference,
p. 26 (1995).

14 Submitted to J. Audio Eng. Soc., 2023 June

https://www.frontiersin.org/articles/10.3389/fdigh.2018.00026
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00026
https://www.frontiersin.org/articles/10.3389/fdigh.2018.00026
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer


DRAFT
DRAFT JAES TEMPLATE

THE AUTHORS

Yongyi Zang Christodoulos Benetatos Zhiyao Duan

Yongyi Zang received his B.S. with honors in 2023, ma-
joring in Audio and Music Engineering under the Electri-
cal and Computer Engineering department at the Univer-
sity of Rochester, minoring in Computer Science. His re-
search interest lies mainly in Computer Audition, as well
as combining techniques with relevant fields, such as Nat-
ural Language Processing and Computer Vision.r

Christodoulos Benetatos is a 5th year Ph.D candidate
in Electrical and Computer Engineering department at the
University of Rochester. He received his B.S and M.Eng
in Electrical Engineering from National Technical Univer-
sity of Athens in 2018. His research interests lie primar-
ily in designing and developing computer-assisted music-
making systems. r

Zhiyao Duan is an associate professor in Electrical and
Computer Engineering, Computer Science and Data Sci-
ence at the University of Rochester. He received his B.S.
in Automation and M.S. in Control Science and Engineer-
ing from Tsinghua University, China, in 2004 and 2008,
respectively, and received his Ph.D. in Computer Science
from Northwestern University in 2013. His research inter-
est is in computer audition and its connections with com-
puter vision, natural language processing, and augmented
and virtual reality. He received a best paper award at the
Sound and Music Computing (SMC) conference in 2017,
a best paper nomination at the International Society for
Music Information Retrieval (ISMIR) conference in 2017,
and a CAREER award from the National Science Foun-
dation (NSF). He served as a Scientific Program Co-Chair
of ISMIR 2021, and is serving as an associate editor for
IEEE Open Journal of Signal Processing, a guest editor for
Transactions of the International Society for Music Infor-
mation Retrieval, and a guest editor for Frontiers in Signal
Processing. He is the President-Elect of ISMIR.

Submitted to J. Audio Eng. Soc., 2023 June 15


